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Abstract. Consider a Hamiltonian H which is an element of the enveloping algebra of 
a Lie algebra 2'. For simplicity we choose 2' as su(2) or su( I ,  I ) .  We look for the coherent 
state Isc) which solves the variational equation S(sclHIsc) = 0. This condition in state space 
is transcribed into a condition in a classical phase space. Geometrical concepts are given 
for the state of lowest energy, and for a self-consistent linearised Hamiltonian. The 
interpretation yields solutions of the equation for the state of lowest energy by iteration 
procedures. 

1. Introduction 

The dequantisation of quantum mechanical problems makes it possible to study 
quantum dynamics in terms of classical dynamics. From the expectation values of 
operators with coherent states, we get classical or dequantised observables on phase 
spaces with generalised Poisson brackets. The Hamiltonian is an element of the 
enveloping algebra of a Lie algebra 3, and the phase spaces are hypersurfaces given 
by constant values of the Casimir observables, on the dual space Y to the Lie algebra. 

In the present paper we derive a concept for the construction of lowest energy 
states and give a geometrical interpretation for all physical quantities which occur. 
For simplicity we choose as Lie algebra su(2) or su(1, 1). 

Starting with a Hamiltonian H, which is at most quadratic in the basis of the Lie 
algebra su(2) respectively an element of the enveloping algebra of su(1, l ) ,  we look 
for those normalised coherent states (sc) in an irreducible representation space of the 
corresponding Lie group which solve the variational equation S(sclH(sc) = 0. From 
this variational equation we derive extrema1 conditions which have a simple geometrical 
interpretation. After dequantising the Hamiltonian we construct a self-consistent linear 
Hamiltonian. Its geometrical interpretation is that of a plane tangent to the Hamiltonian 
energy surface, whereas the state Isc) corresponds to a particular point on this energy 
surface. With this interpretation we construct graphical iteration procedures and 
transcribe them into numerical ones. To show the geometrical content of the concept, 
we demonstrate the method on two instructive and solvable examples for each of the 
two groups. 

t Work supported by Deutsche Forschungsgemeinschaft. 
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2. Hamiltonians based on SU(2) 

In this section we construct a polynomial Hamiltonian H which is at most quadratic 
in the basis of the Lie algebra of SU(2) and its dequantisation. 

The operators { J 3 ,  J,, J - }  are the basis elements of the Lie algebra su(2), which 
fulfil the well known commutator relations [J3 ,  5-1 = * J + ,  [J , ,  J - ]  = 2J3. Without loss 
of generality we can represent the Hamiltonian H by irreducible tensor operators J :  
(Edmonds 1957) of maximum rank two, where k denotes the rank and q the com- 
ponents, q = -k ,  - k  + 1, .  . . , +k. 

2 + k  

H =  1 akq(-I) 'JJk, .  (2.1) 
k = O  q = - k  

From the hermiticity of the Hamiltonian we get with (Jk,)' = k-l)qJ:: akq= (-1)'ak-q; 
' + '  denotes the Hermitian adjoint, and ' - '  the complex conjugate. As trial states we 
define the coherent states lz)  (Perelomov 1972) of the group SU(2) (Kramer and 
Saraceno 1981) by 

i z )  := exp( f.T.-)ljj), (2.2) 

where ljj) is the highest weight state. 
For an arbitrary operator A we define 

.P(z ' ,  2) := ( z ' ~ A ~ z ) / ( z ' ~ z ) .  (2.3) 

The generalised Poisson bracket {. , .} (Kramer and Saraceno 1981), defined by 

for arbitrary functions 9 ( z ,  Z) and %(z ,  Z) ,  provides a Poisson realisation of the 
representation of the Lie algebra. 

Proposition. V coherent states lz) ,  where J E su(2) and A is an arbitrary operator 

ProoJ: For the proof see Kramer and Saraceno (1981). 

To get numerical expressions later on, we need a suitable parametrisation of the 
coherent states lz). By the stereographic projection (Cartan 1961) of the complex plane 
onto the Riemann sphere one obtains 

z = tan $3 * exp(-i y )  o < y ~ 2 ~ , 0 s p S 7 r  (2.6) 

which leads to the usual spherical coordinates for B,(p, y )  i ~ { l , 2 , 3 } .  

Interpretation. Consider R3 with axes labelled by 92, j 5 3 .  Then B,(p, y )  is the 
restriction of the coordinate functions to the sphere of radius j. It is useful to consider 
not only this sphere, but also R3 - LfXSU(2), the dual of the Lie algebra su(2). This 
will be fundamental for what follows. It is well known that on the dual YX of a Lie 
algebra there exists a degenerate Poisson bracket which yields a realisation of the Lie 
algebra 3. The Poisson bracket given above is the restriction of this degenerate bracket 
to a non-degenerate projection onto a sphere of radius j (Kramer and Saraceno 1981). 
We shall use this relation for an interpretation of the quantum dynamics in terms of 
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geometrical concepts of classical dynamics. From the Hamiltonian (2.1) we get with 
definition (2.3) 

2 +k 

w z ,  2) = c (-l)"&k,(z, 9 ) .  
k = O  q = - k  

(2.7) 

Hence, X(z, Z) can be written as a function of $1 and therefore X(9) = E may be 
interpreted as the subvariety (9 = (2,, 92, 1 3 ) l X ( f )  - E  = 0) i.e. a two-dimensional 
surface in a three-dimensional space spanned by the euclidian functions 2,. 

Now we are able to look for those states lsc):= ~z) / ( z~z ) " *  which solve the variational 
equation SX( z, 2) = 0. 

Proposition. 

and with proposition (2.5) 

19q W ( Z ,  2) = 0. 

Proof: The variational principle SX(z, 9 )  = 0 implies that the derivatives of X with 
respect to z and 9 vanish. Together with proposition (2.5) and the explicit form of 
the generalised Poisson bracket (2.4) this yields the result. 

To use the equation above, we have to dequantise the Hamiltonian (2.1), which 
only means the transition from the Hamiltonian H to the corresponding energy surface 
X as a function of the Cartesian components of the angular momentum. For that we 
need the connection between 2: (the expectation value of the irreducible tensor 
operators J,")  and the irreducible tensors ( .2),". Define J :  with expectation value 2; 
and 

J," = [Jk-'J'],", ( a $ , " )  = [9k-'p]," k = 1,2, .  . . . 

Theorem. For all irreducible tensor operators 

Roo$ It is clear from the transformation properties of the irreducible tensor operators 
J :  and the tensors C.2): that (.$):-b:. Hence 

2': = f f k (  '9;) V r :  -ks r c  k. 

Because of J f :  = N . ( J + ) k  with a normalisation constant N, we get 

2f: = N9t = ( . k r v ( d t + l k  = f f k (  '2): 9 A = (zlJ:lz>/(zlz) 



3172 W Schweizer and P Kramer 

Now we are able to write X explicitly as a function of B;i. and define for convenience 
3 3 

Xe($l,Ch,9,)=: c b,$d + ‘t$t$J? 
i= l  1 s j = 1  

but notice that the coefficients c, depend on j .  

(2.10) 

Interpretation. Consider X as a classical Hamiltonian defined on R3, even if the 
coefficients depend on j .  I t  determines energy surfaces in R3 such that %(z, 2) yields 
the values of X when restricted to the sphere. Then proposition (2.8) requires that 
the energy and angular momentum surfaces have the same tangential plane at the 
intersection point. 

3. Self-consistency and its geometrical interpretation 

To give a geometrical picture for the extrema1 conditions above, we define a self- 
consistent linear Hamiltonian H,, by 

(SC/H,,jSC) = (sclH/sc) 
and 

(3.1) 

(SCIIJq, H,cIlSC) = (4[Jq, HIIS4 vq E 11,2931, (3.2) 
and this is a nonlinear equation like the Hartree-Fock equations (Matsen 1978). 

Because H,, is a linear operator in the Lie algebra 

% 3 z ,  2):= (z l~sc lz ) l (z lz )  (3.3) 
is a linear function in &tL and therefore determines a plane in a space spanned by the 
Cartesian components 9I of the angular momentum. The equations corresponding to 
the quantum mechanical conditions (3.1), (3.2) are 

(3.4) 

(3.5) 

where we have made use of proposition (2.5). These two equations have only a local 
validity. For convenience we define 

and use (2.10), hence 

and consequently 



The coherent state of lowest energy 3 173 

We obtain the geometrical interpretation summarised below. 

X =  E. 
(1) (3.4) requires a common point of the plane e:’= E with the energy surface 

(2) (3.5) requires that &p‘,:’ = E determines a plane tangent to the energy surface at 
( 5  f), 
i.e. {&p‘,f’lz E C }  contains all possible tangent planes and et ’ (z ,  Z) determines a vector 
from the origin to the energy surface 3Y at (z, 5). The self-consistent Hamiltonian XSc 
has to fulfil in addition the extremal conditions, hence it is a special element from the 
set above. After this interpretation we shall omit the index ( ”  in the following. 

From the extremal condition we get 

Uq, X s c }  = 0 (3.7) 

and, hence, XSc = E determines a plane tangent to the sphere too. Thus, Xsc determines 
the tangential plane at the point of contact of the energy surface with the angular 
momentum sphere. The self-consistent state Isc) is then that state which corresponds 
to this point of contact. 

where ‘s’ denotes the point of contact. 
By a finite SU(2)-transformation one gets a standard form of X, which characterises 

the energy surface. The invariants for this characterisation are labelled in Bronstein 
and Semendjajew (1973). 

4. The iteration procedure 

Before constructing a graphical iteration procedure, we discuss how the energy surfaces 
vary, if the energy changes. All non-parabolic surfaces are described in the form 

Therefore, a change of the energy means a change of the principal axes of the energy 
surface while keeping its centre, and this, essentially, corresponds to a swell or a shrink 
of the surface. 

All parabolic surfaces are represented in the form 

C ai($i -$i,O)* * ($j - 9 j . O  - E )  = 0, 
i#j 

which means only a translation along the axis $j without change of shape, if the energy 
vanes. From (3.4, 5 and 7) and their interpretation we get two possible iteration 
procedures; in what follows labelled by A and B. 

(A) The energy-surface and the angular momentum sphere are drawn cutting each 
other. The tangential plane to the energy surface at an arbitrary point of intersection 
is then constructed. Now, by parallel shifting of this plane, a tangential plane to the 
sphere is constructed. In the sense given above, the energy surface is altered, until it 
cuts the sphere at the tangential point and the tangent plane to the energy surface is 
again constructed at this point. The whole procedure is repeated until the point of 
contact sphere-energy surface is constructed. 
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(B) As in (A), the energy surface and the angular momentum sphere are drawn 
cutting each other. But now we start with a tangent plane to the sphere at an arbitrary 
point of the intersection and construct a parallel tangential plane at the energy surface. 
The tangential point along the radius vector is projected onto the sphere and the energy 
surface altered so that it cuts the sphere at this projected point. Now the whole 
procedure is repeated until the point of contact is constructed. 
To obtain numerical expressions for the iteration, we use the parametrisation of § 2 
for the coherent states lz). 

For convenience we define 

i E  { I ,  2,3}  (4.1 ) 
1 
- . bi 5: C, 

j 

and obtain from equation (3.7) and (3.8), for the first iteration process (A) 

c2 + c12 sin p, cos yI - 2c22 sin p, sin yi - ~ 2 3  cos pi 
c1 + 2 c l  sin PI cos yI - c12 sin P I  sin yI - ~ 1 3  cos pi 

tan yi+l = - (4.2) 

)(+ (4.3) 

)(A) (4.4) 

c, + 2 c ,  I sin PI cos yI - cI2  sin PI cos y, - c13 cos PI 
c3 + c13 sin p, cos yI - c23 sin P I  sin yt - 2C33 cos PI 
c2 + c I z  sin p, cos y, - 2cZ2 sin P I  sin y, - ~ 2 3  cos p, 

cos ylt1 

( c3 + ~ 1 3  sin PI cos y, - c23 sin pz sin yt -2C33 cos PI sin y,+, 

tan = - 

tan = + 

where the indices i, i + l  label the iteration. In a similar way one derives equations 
for iteration process (B). 

5. Examples 

We will demonstrate the method by two solvable examples. For the first one we choose 
the ellipsoid as a non-parabolic energy surface. The physical background is for example 
the force-free rigid body. As an example for a parabolic energy surface we choose 
the Lipkin model (Click er a1 1961, Lipkin er a1 1965, Agassi et a1 1966). The Lipkin 
model is an N-fermion system distributed into two entirely degenerate energy levels. 
The Hamiltonian for the ellipsoid is 

2t = CI 19: + c229: + c33A 

=j2 (  cI I sin' p cos2 y + cZ2 sin2 p sin2 y + c33 cos2 p )  (5.1) 

with c , ~  > 0 for the real and c,, < 0 for the imaginary ellipsoid (negative energy). 
For the iteration procedure (A) we get from (4.2) and (4.3) 

(5.2) 
c22 

CI I 
tan Y , + ~  =-tan y, 

(5.3) 

or 
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and 

Explicit discussion of these equations shows the iteration (A) going always to the 
energy maximum (minimum) for the real (imaginary) ellipsoid. For the iteration 
procedure ( B )  it follows that 

The comparison with the previous equations shows the opposite behaviour; this 
iteration goes always to the energy minimum (maximum) for the real (imaginary) 
ellipsoid. The graphical iteration procedure is drawn in figure 1. 

i terat ion A i t e ro t i on  B 

Figure 1. Iteration example for an elliptic energy surface 

The Hamiltonian for the Lipkin model is 

H =  & J 3 - ; v ( J : + J Z )  

where 7'" is a parameter for the strength of the interaction, and Ji are the quasi-spin 
operators. Hence the equation for the energy surface is 

and this is a hyperbolic paraboloid. With 

x:= ( Y / ~ ) ( 2 j -  1) 

we get 

( I / & j ) X ( p ,  y )  = cos p -fx sin' p cos 2y. 

(5.7) 

If we measure the energy in E / & j  the only remaining parameter is x, which completely 
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determines the energy surface. For the iteration (A) we get 

tan yi+l = -tan yi (5.10) 

tan p,+, = -x. sin p, 
and for (B) 

tan Y , + ~  = -tan yi 

1 sin yi 1 
sin Pi+  I = - tan p i  - = - - tan pi. 

X sln Yi+l X 

(5.1 1 )  

(5.12) 

(5.13) 

Equations (5.10) and (5.12) make sense only if yz = yo = 0 or ;T mod T. Because 
X ( p ,  y )  = X ( p ,  y + T) it is sufficient to examine only the case yi = 0, fr. The only 
interesting iteration procedure is (A),  because for the iteration (B) equation (5.13) 
enforces lim,+m p, = 0, which is never an energy minimum. 

Figure 3. Iteration example for the Lipkin model. 
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The iteration equations (5.10) and (5.11) show a phase transition at x =  1. For 
x c 1 the energy minimum lies always at p = v and for x > 1 at p # T. The geometrical 
viewpoint, we prefer in this paper, yields these facts in a simple way. 

Finally we show the graphical iteration procedure in figure 3. 

6. Hamiltonians based on SU(1,l)  

The case where the Hamiltonian is quadratic in the generators of the group SU( 1 , l )  
is very similar to the one discussed before. One would get directly most of the following 
formulae, by trimming with the factor (-i). Nevertheless, there are important 
differences, for example, the metric. If we bear these facts in mind, it is safe to assume 
analogous geometrical interpretations. The physical reason for our interest is the 
possibility of studying Hamiltonians with central potentials (Kramer 198 1 ), but 'also 
for example the Foldy model for a superfluid Bose system, like 4He (Solomon 1971), 
well known in solid state physics. 

We choose as a basis for the Lie algebra 

[A3, A+] = *A*  [A,, A-] = -2A,. (6.1 ) 

By using 

A: = A: - A: - A: 

A:, = *J1/2iA,, 

A:2 = -iJJ3/2~:, . . . 
Ah = A, 

we get the general quadratic Hamiltonian H 
2 +2 

H =  2 ab(-1)9~!q. 
k = O  q = - 2  

As (A!,)+ = At, the hermiticity of the Hamiltonian requires 
- 
ab = ak-g (6.4) 

To consider the dequantised Hamiltonian we define the coherent states by (Kramer 
and Saracen0 1981) 

lz) := exp(TA+)lqd, (6.5) 

where 144) is the lowest weight state. For the numerical calculations later on we need 
a suitable parametrisation for the coherent states lz), which we choose to be 

z = i tanh $p - exp(-ia). (6 .6)  

In order to get the corresponding energy surface 2, we need again the connection 
between the expectation value of the irreducible tensor operators and the irreducible 
tensors ( d):, defined in the same way as in § 2. In analogy to theorem (2.9) we get 

(6.7) 
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Hence from (6.3) X ( d 1 d 2 d 3 ) ,  which we define for convenience as 
3 3 

% ( & I ,  5421 1 + C cnjddy 
, = I  1 S J = 1  

From (6.6) and (2.3) follows 
d O - & g 5 $ : - & - & 2 -  0- 2-9 2 * 

7. The iteration 

The graphical iteration can be derived from (6.8) and (6.9). Energy conservation 
requires the components d, to run only on the energy surface X ( d l d 2 d 3 )  = E = 
constant. Equation (6.9) defines a two-sheeted hyperboloid and, therefore, the only 
possible solutions are the cutting lines of these two hyperplanes. The general quantum 
mechanical conditions for the self-consistent state derived in 0 4 are independent of 
the chosen group. With the preliminary remarks of § 6 we get the following picture. 

%(sit) = E can be interpreted as an energy surface in the Minkowski space spanned 
by the three pseudoeuclidian components d,. The self-consistent state corresponds to 
the point of contact of this energy surface with the hyperboloid d: - d: - d: = constant. 
If the hyperboloid dz take the place of the sphere 2; = 2’ the two graphical iteration 
procedures are the same as in 5 5, and therefore labelled with (A) and ( B )  too. 

To derive the iteration equations, we define the linearised Hamiltonian 

For convenience we define 

(1 /4)b ,= :  c, i E { 1,2,3} 

and get with the extrema1 condition {d,, Xsc} = 0 for iteration (A) 

tanh Pi+l  cos a l+l  

(7.2) 

c2+ c12 sinh Pi sin a, - 2c,, sinh P,  * cos a, + ~ 2 3  cosh P I  
c3+ ~ 1 3  sinh PI .  sin a, - c23 sinh PI cos a ,  +2C33 cosh PI (7.3) - - 

- tanh Pi+l  sin ai+l 

(7.4) 

tan (7.5) 

c1 + 2cl sinh PI sin a, - c12 sinh P I .  cos a, + ~ 1 3  cosh P I  
= (c3 + c13 sinh PI sin a, - c23 sinh PI . cos a, + 2c3 ,  cosh pZ 
cI + 2cl I sinh P I .  sin a, - c12 sinh PI . cos a, + ~ 1 3  cosh P I  
cz+ c I2  sinh P ,  - sin a, - 2c,, sinh P I .  cos a, + cZ3 cosh P I  

= - 

where the indices i, i + 1 label the iteration. In a similar way one can derive equations 
for iteration process (B) .  

8. Examples 

To get a physical interpretation not only for the hyperboloid d: but also for the 
following two examples, we introduce the boson creation and annihilation operators 
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U; and a, of a system of two particles with relative coordinates x and momenta p 

U::= J 1 / 2 ( x J  -ip,) 

a, := J1/2 (x ,  + ip,) h = l ;  

then the generators Ai become 

3 

] = I  
A2 = a  C (xjpj + p i x ] )  

The angular momentum operator is 

Lk = E k j l *  xlpi 
j ,  1 

where &kJl is the Levi-Civita symbol, antisymmetric in all pairs of indices kj andj l  and 
normalised so that ~ 1 2 3  = 1. 

Hence, the dequantised squared angular momentum is 

P= 4 ( 4  - a: - a;) (8.2) 

and therefore, the hyperboloid &: does not correspond to the quantum mechanical 
eigenvalue Z(I + 1 )  but to the classical value 1'. 

For a local central potential, the Hamiltonian is 

X = ( ( 1 / 2 m ) p * p + V ( x - x )  

= ( 1 / 2 m )  . 2 ( a 3  +al) + V ( 2 ( d 3  (8.3) 

Because 2 is independent of dZ, the corresponding energy surfaces are cylinders or 
planes. The harmonic oscillator is 

2 = ( I / m )  (&3 + & I  ) + (a3 - 1 3  

hence a plane and for our purpose not very interesting. As a first example we regard 
the anharmonic quadric oscillator 

With 

( 8 . 4 )  becomes 

(8.4) 

X = J I / 2  ~ C X  + b y 2  c > o ,  

a parabolic cylinder. 
From (7.3)-(7.5) we get for the iteration procedure A 

tanh pi+l cos = 0 

and 

c + b sinh p, sin a, - b cosh P I  
c - b sinh pi sin cy, + b cosh P I  ' -tanh p,+l  sin a l C l  = 



3180 W Schweizer and P Kramer 

Figure 4. Energy surface of the anharmonic oscillator (8.6). 

Hence = f .rr mod .rr and (8.8) becomes 

(8.9) 

for =in, which is sufficient because E&, p i )  = E(&, - p i ) .  (8.7) converges 
only if x > 0 and this is physically and geometrically easy to understand. x > 0 means 
that the leg of the potential V = b y 2  is opened upwards, therefore, a test particle is 
locked in and can only oscillate about its position of equilibrium. In the opposite case 
x < 0, the test particle escapes to infinity. The exact solution is pm = 4 In x, which is 
always a minimum. It follows graphically (see figure 6) and numerically, that the 
second iteration procedure (B) has no solution. The last example is not quadratic in 
the Lie algebra of SU( 1, 1) but a central force problem too-the Coulomb interaction 
V ( x x ) -  l / \ x l .  Therefore, we cannot use the iteration equations above, we have to 
derive new ones. 

With the Hamiltonian 

%‘= a ( d , + d l )  + b ( d 3 - d I ) - 1 ’ 2  a > O  

= 2ax +2-Il4 b J l / y  
b 

(8.10) 

*l 

-------t<; I -  

Figure S. Cut in the d+, plane for the quadratic oscillator ,y < O. 
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Figure 6. Cut in the 99, - a', plane for the quadratic oscillator ,y = 0. If one constructs a 
tangent to the hyperboloid at the point of intersection, it can be seen that iteration procedure 
(B) has no solution because there exists no tangent to the energy surface which is parallel 
to the one above, whereas the iteration procedure (A) runs very well. 

For convenience we define 

x := fq-'/ 'b/a (8.14) 

and get a =;T mod 7r for both iteration procedures. With the same argument as in 
the first example we restrict the discussion to a = f ~ .  Hence for the iteration procedure 
(A) 

1 +X(cosh pi +sinh 
1 -x(cosh pi +sinh 

tanh pi+' = - (8.15) 

and for (B) 

1 
(8.16) 

X 

Both iteration procedures lead to the exact value Pm = 2 In( -x ) ,  which is always a 
minimum, and converges only for x<O (see figure 8). This behaviour is easy to 
understand if we contemplate the potential V(lxJ) = b 2-'14 * y- ' /* .  For x < 0 we 

exp(&+,) = -- - e x p ( 2 ~ ) .  

Figure 7. Cut through the energy surface of the Coulomb model (8.10). 
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Figure 8. The figure shows that for the Coulomb model with x < 0 the energy surface has 
no point of contact with the hyperboloid 

Figure 9. Iteration ( A )  example for the Couolmb model; hyperboloid d:: - energy 
surface: --- x=-0.7,  -.-.- x =  -1.4. The point of contact for x =  - a g R '  can be 
constructed from that for ,y = - l /a  by reflection in the mirror plane d, = 0. 

always have b<O and vice versa. If we interpret V as a Coulomb potential, b<O 
means e.g. the motion of an  electron in the field of a nucleus. In this case bound states 
are possible, whereas b > 0 describes the motion of a charged particle in the field of 
a particle with the same charge, hence an  unstable system. Finally we show a cut 
through the normalised cylindrical energy surface %'/ aq for different X-values and  
some iteration examples. 
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